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Abstract

The frame and scale dependence of the pair-term contribution to the electromagnetic form factor
of a spin-zero composite system of two-fermions is studied within the Light Front. The form factor
is evaluated from the plus-component of the current in the Breit frame, using for the first time a
nonconstant, symmetric ansatz for the Bethe–Salpeter amplitude. The frame dependence is analyzed
by allowing a nonvanishing plus component of the momentum transfer, while the dynamical scale
is set by the masses of the constituents and by mass and size of the composite system. A transverse
momentum distribution, associated with the Bethe–Salpeter amplitude, is introduced which allows
to define strongly and weakly relativistic systems. In particular, for strongly relativistic systems, the
pair term vanishes for the Drell–Yan condition, while is dominant for momentum transfer along the
light-front direction. For a weakly relativistic system, fitted to the deuteron scale, the pair term is
negligible up to momentum transfers of 1 (GeV/c)2. A comparison with results obtained within the
Front-Form Hamiltonian dynamics with a fixed number of constituents is also presented. 2002
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1. Introduction

Present knowledge of the structure of hadrons and nuclei mainly comes from
electroweak form factors, in elastic and transition regimes, and from deep-inelastic
structure functions. To perform a meaningful comparison between theoretical models
and the experimental data, one needs a description of the bound system of interacting
constituents and a consistent current operator. Within a Hamiltonian approach, the state
of the system is defined on a specified hypersurface of the spacetime that does not
contain timelike directions. Dirac identified three spacetime hypersurfaces, adequate to
define the state of a relativistic system, which correspond to different forms of relativistic
Hamiltonian Dynamics, namely the Instant Form, the Front Form and the Point Form [1].

In the Front-Form dynamics, the consistency between the current operator and the state
of the hadron system has been discussed both from a field theoretical point of view and
within approaches with a fixed number of particles. In field theory, the state has an infinite
number of components in the Fock space [2]. However, for practical applications only
the lowest Fock component, or valence component, is usually modeled and used in the
calculations of electroweak form factors. In principle, the infinite set of coupled eigenvalue
equations for the Hamiltonian operator in the Fock space can be replaced by an effective
squared mass operator acting in the valence sector; at the same time, it is possible to express
systematically the higher Fock-state components of the wave function as functionals of the
lower ones [2–4]. The effective electroweak current operator to be used with the valence
component of the state can be consistently derived within the framework of the Bethe–
Salpeter equation projected at equal light-front time, as recently shown in Refs. [5,6]. (For
recent investigation on other aspects of the Bethe–Salpeter equation within the light front,
see, e.g. [7,8]).

If a fixed number of interacting particles is assumed, then a Front-Form Hamiltonian
dynamics (FFHD) can be developed. One can use the Bakamjian–Thomas construction
[9], where an effective interaction in the mass operator can be chosen such that a unitary
representation of the Poincaré group is possible. Taking the Front-Form spin operator as the
free one and an interaction in the mass operator that commutes with such a spin operator,
one is able to explicitly construct generators of the Poincaré group [10,11]. In this case,
the eigenfunctions of the mass operator are normalized to one, differently from the field
theoretical valence component, which has in general a probability less than one [2]. A wide
number of papers have been devoted to the evaluation of properties of hadrons and nuclei
within the Front-Form Hamiltonian dynamics with a finite number of particles (see, e.g.,
Refs. [12–18], just to give a short account of some previous works). In particular, it should
be noted that FFHD for the two-nucleon case yields the possibility to retain the large
amount of successful phenomenology developed within a nonrelativistic approximation
(see, e.g., [12,19]). Usually, to obtain electroweak form factors of nuclear systems or
hadrons, the Drell–Yan condition on the momentum transfer, i.e.,q+ = q0 + q3 = 0, and
the matrix elements of the plus component of the current,j+, are adopted. The physical
argument often advocated in favour of these assumptions is that the production of pairs
from the incoming photon (nonvalence or pair-term contribution) is suppressed in the
Drell–Yan frame by light-front momentum conservation (see, e.g., [20]). This was indeed
proved in schematic covariant field theoretical models, for spin-zero two-boson composite
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systems [21] and for the pion with pseudo-scalar coupling to the quarks [22]. However, for
spin-one systems the pair term survives and contributes toj+ in the Drell–Yan frame [23–
25]. Furthermore, in this case the pair term is necessary to keep the rotational invariance of
the form factors for spin-one particles. Within FFHD, in the Drell–Yan frame, the matrix
elements of the plus component of the current should fulfill the so-called angular condition
[26]. This constraint is not satisfied by a calculation considering only the Front-Form
wave function and the impulse approximation. This approximation implies an ambiguity in
extracting form factors for spin-one systems, as shown for the deuteron [12,26,27] and for
the rho-meson [28–30]. To solve this problem, related to the lacking of covariance for the
impulse approximation current operator, some physically inspired combinations of matrix
elements were proposed to extract form factors from the current, as the “good-component”
approach [31] or the elimination of spurious contributions to the form factors [32].

To avoid the difficulties associated with these ambiguities, another approach was
proposed in Ref. [33] and applied to the deuteron [19,34,35]. In these works, it was
shown that a current operator which satisfies the requirements of Poincaré, parity and time-
reversal covariance, as well as hermiticity and current conservation, can be obtained from a
one-body operator in the Breit frame with momentum transfer along thez-direction. Then,
for any hadron system the electromagnetic form factors can be calculated from the wave
function without ambiguities.

This major development in the calculation of the form factors from the Front-Form wave
function is, however, confronted with the fact that, even in simple field-theoretical models,
the pair production mechanism contributes in theq+ �= 0 Breit frame, as was discussed in
the calculation of the pion form factor fromj+ in Ref. [36]. Therefore, within an approach
with a fixed number of particles such a mechanism should be taken into account through
an effective two-body current.

The aim of the present work is to investigate in a covariant model, based on a
nonconstant, symmetric vertex function, the effect of the pair term in the evaluation of
electromagnetic form factors for a pion-like system composed by two identical fermions. It
is well known that, to avoid divergences in the evaluation of the covariant triangle-diagram
for the form factor some regularization has to be introduced. In Refs. [22–24] a pion-qq̄

vertex function, nonsymmetric in the four-momenta of the quarks, was adopted. However,
a nonsymmetric vertex cannot be considered a realistic approximation of aqq̄ bound-state
amplitude and phenomenological problems arise (e.g., the form factor and the weak decay
constant cannot be simultaneously reproduced) [22]. Another approach has been proposed
in Ref. [36], where the fermion loop was regulated by considering a nonlocal photon
vertex. In the present work, for describing the momentum part of the coupling between
the constituents and the spin-0 system, we use a covariant model with the following form
of the vertex function

Λ(k,P )= C

(k2 −m2
R + ıε)

+ C

((P − k)2 −m2
R + ıε)

. (1)

Differently from [22–24], we adopt a vertex function which is symmetric by the exchange
of the momentum of the two fermions and implies a light-front valence wave function with
the same property, as shown in the following sections. In this way, we are simulating the
symmetry properties of a Bethe–Salpeter amplitude derived from quantum field theory.
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The other main ingredient of our covariant model, for calculating the form factor of the
composite system, is the electromagnetic current, that is taken in impulse approximation. It
should be pointed out that within our approach such a current is conserved (see Section 2).
In the spirit of Ref. [36], we study the importance of the pair diagram evaluated in different
Breit frames, which differ for the direction of the spatial part of the momentum transfer.
We analyze and compare two systems that have relativistic or nonrelativistic nature,
respectively. In order to better define this feature, we first construct the valence wave
function from the symmetric ansatz for the Bethe–Salpeter amplitude and then, from this
wave function, we build up the transverse-momentum distribution of the constituents. This
momentum distribution plays a twofold role, allowing one: (i) to make contact between
our covariant model and dynamical models of the composite system, developed within
approaches with a fixed number of particles, and, more important, (ii) to quantitatively
define the two limiting cases that we will consider, namely the strongly and weakly
relativistic systems. In the first case, we make calculations for a spin-0 model, well suited
for the pion. Then we compare these results with the ones obtained with a realistic pion
wave function generated by a potential able to describe the meson spectroscopy [37]. In
the second case, we artificially adjust the transverse momentum distribution of the model
to the deuteron scale, to get insight into the pair-term contribution for a weakly relativistic
system with a small average transverse momentum for the constituents (getting rid of the
lengthy algebra of them1 �= m2 case, corresponding to the actual case of charged heavy
mesons).

The paper is organized as follows. In Section 2, our model for the spin-zero, two-
fermion system with a symmetric vertex function is presented. In Section 3, the light-front
valence wave function for the covariant model is introduced, as well as the corresponding
transverse momentum distribution and the corresponding elastic form factor. In Section 4,
numerical results are presented for (i) the electromagnetic form factor of our model, (ii) the
separate contribution of the pair term and (iii) the form factor corresponding to the valence
component. In Section 5, we draw our conclusions.

2. Electromagnetic form factor of a pion-like system

In our model, the electromagnetic current for a two-fermion composite system with spin
equal to 0—i.e., a pion-like system considered asqq̄ bound state—is calculated in one-
loop approximation (triangle diagram), modelling the Bethe–Salpeter amplitude through a
symmetric vertex function in momentum space with a pseudoscalar coupling between pion
and quark degrees of freedom. This coupling is suggested by a simple effective Lagrangian
(see, e.g., [38])

LI = −ıg �Φ · q̄γ 5�τq. (2)

The coupling constantg is given by the Goldberg–Treiman relation at the quark level,
namelyg =m/fπ , with m the mass of the constituents andfπ the pion decay constant.

The electromagnetic current ofπ+ is obtained from the covariant expression corre-
sponding to the triangle diagram (see, e.g., [39] and [40]):
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jµ = −ı2em
2

f 2
π

Nc

∫
d4k

(2π)4
Tr

[
S(k)γ 5S(k − P ′)γ µS(k − P)γ 5]Λ(k,P ′)Λ(k,P ),

(3)

whereS(p) = 1
/p−m+ıε , Nc = 3 is the number of colors,Pµ andP ′µ = Pµ + qµ are the

initial and final momenta of the system,qµ is the momentum transfer andkµ the spectator
quark momentum. The factor 2 stems from isospin algebra. (Current conservation can be
easily proven in the Breit frame: after performing the trace inq · j , one notices that the
integrand of the resulting expression is odd by changing�k → −�k; this means thatq · j is
zero.)

In Eq. (3), we introduce the symmetric vertex function of Eq. (1). This vertex function
produces a light-front wave function symmetric by the interchange of quark and antiquark
momenta, and is not affected by the conceptual difficulties associated with the use of the
nonsymmetric regulator, as mentioned in the Introduction (see Refs. [30,36]). Since we
have not specified the dynamics which drives the Bethe–Salpeter amplitude, we have to
resort to a physical condition for normalizing the Bethe–Salpeter vertex. As a matter of
fact, the normalization constantC in the vertex function, Eq. (1), is fixed by imposing the
charge normalization condition (i.e., the pion form factor at zero momentum transfer must
be equal to 1).

In our analysis we consider Breit frames, where the momentum transferqµ has the
spatial component parallel to thez − x plane. By using Front-Form variables, i.e.,k+ =
k0 + k3, k− = k0 − k3, �k⊥ ≡ (k1, k2) one has

q+ = −q− =
√

−q2 sinα, qx =
√

−q2 cosα, qy = 0,

q2 = q+q− − (�q⊥)2. (4)

The Drell–Yan conditionq+ = 0 is recovered withα = 0, while theq+ = √−q2 condition
[33] comes withα = 90◦. (Note that the angleθ of Ref. [36] corresponds toα + 90◦).
The initial and final momenta of the composite spin-0 bound state are:P 0 = E = E′ =√
m2
B − q2/4, �P ′⊥ = − �P⊥ = �q⊥/2 andP ′

z = −Pz = q+/2.
As well known, the pion form factor can be extracted from the covariant expression:

jµ = e
(
Pµ + P ′µ)

Fπ
(
q2). (5)

If covariance and current conservation are fulfilled in a model calculation, one can
obviously use any frame and any nonvanishing component of the current to calculate the
electromagnetic form factor. We calculate the form factor for our pion model defined by
Eq. (1) and Eq. (3), using the plus component of the current in the Breit frame with�q in
the z–x plane. In the evaluation of the form factor one can single out two nonvanishing
contributions in Eq. (3) [21,22,36,41]:

Fπ
(
q2) = F (I)

π

(
q2, α

) + F (II)
π

(
q2, α

)
, (6)

whereF (I)
π (q2, α) has the loop integration onk+ constrained by 0� k+ < P+, see the

light-front time-ordered diagram in Fig. 1(a), whileF (II)
π (q2, α) has the loop integration

on k+ in the intervalP+ � k+ � P
′+, see Fig. 1(b). The valence component of the
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(a)

(b)

Fig. 1. Light-front time-ordered diagrams for the current: (a)F
(I)
π (Eq. (7)) and (b)F(II )

π (Eq. (8)).

pion contributes toF (I)
π (q2, α) only, but in our model it does not give the full result in

0 � k+ < P+, as discussed in detail in Section 4. The componentF
(II)
π (q2, α) of the

form factor is the contribution of the pair production mechanism from an incoming virtual
photon withq+ > 0.

The two contributions to the form factor obtained fromj+ are given by the following
expressions

F (I)
π

(
q2, α

) = −ı m2

(P+ + P ′+)f 2
π

Nc

(2π)4

×
∫

d2k⊥ dk+ dk− θ(k+)θ(P+ − k+)
k+(P+ − k+)(P ′+ − k+)

Π(k,P,P ′) (7)

and

F (II)
π

(
q2, α

) = −ı m2

(P+ + P ′+)f 2
π

Nc

(2π)4

×
∫

d2k⊥ dk+ dk− θ(k+ − P+)θ(P ′+ − k+)
k+(P+ − k+)(P ′+ − k+)

Π(k,P,P ′), (8)

where

Π(k,P,P ′) = Tr[O+]Λ(k,P )Λ(k,P ′)
(k− − k−

on + ıε)(P− − k− − (P − k)−on + ıε
P+−k+ )

× 1

(P ′− − k− − (P ′ − k)−on + ıε)
, (9)

with the on-energy-shell values of the individual momenta given by
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k−
on = k2⊥ +m2

k+ , (P − k)−on = (P − k)2⊥ +m2

P+ − k+ and

(P ′ − k)−on = (P ′ − k)2⊥ +m2

P ′+ − k+ . (10)

In Eq. (9), the trace Tr[O+] of the operator

O+ = (/k +m)γ 5(/k − /P ′ +m)γ+(/k− /P +m)γ 5, (11)

is given by:

1

4
Tr[O+] = −k−(P ′+ − k+)(P+ − k+)+ (

k2⊥ +m2)(k+ − P+ − P ′+)

− 1

2
�k⊥ · ( �P ′⊥ − �P⊥)(P ′+ − P+)+ 1

4
k+q2⊥. (12)

The explicit form of the symmetric regulator function in Front-Form momentum
coordinates is given by

Λ(k,P ) = C

[
k+

(
k− − k2⊥ +m2

R − ıε

k+

)]−1

+C

[
(P+ − k+)

(
P− − k− − (P − k)2⊥ +m2

R − ıε

P+ − k+

)]−1

, (13)

where the position of the poles fork− clearly appears.
The detailed forms ofF (I)

π and F
(II)
π , after integrating overk−, are given in the

Appendices A and B, respectively. In what follows, we will discuss some general features
of Eqs. (7) and (8).

Since the integration range ofk+ is 0� k+ < P+ in Eq. (7) andP+ � k+ � P
′+ in

Eq. (8), then, the sign of the imaginary part of some of the poles in thek−-complex plane
changes (see Eqs. (9) and (13)). The poles that have their imaginary part modified are

k−
(1) = P− − (P − k)−on + ıε

P+ − k+ = P− − (P − k)2⊥ +m2

P+ − k+ + ıε

P+ − k+ , (14)

and

k−
(2) = P− − (P − k)2⊥ +m2

R

P+ − k+ + ıε

P+ − k+ . (15)

The last one comes from the vertex function, Eq. (13). The difference in the sign of the
imaginary parts ofk−

(1) andk−
(2) for the intervals 0� k+ < P+ andP+ � k+ � P

′+ is the
mathematical signature of the pair production mechanism, which appears just in the second
interval.

The sum of the contributionsF (I)
π (q2, α) andF (II)

π (q2, α) yields the covariant result,
dependent uponq2 only. Then the different directions of�q in the Breit frame can only
change the values ofF (I)

π (q2, α) and F (II)
π (q2, α), but not their sum. For instance, by

choosingq+ = 0 (i.e.,α = 0) F (II)
π (q2, α) vanishes and thereforeF (I)

π (q2, α) alone gives
the whole, covariant result [21].
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It is interesting to note that in our model the pair term is linear inq+, for smallq+, as
one can verify by direct inspection of the structure of Eq. (8), once thek− integration is
performed. As a matter of fact, the contour for the Cauchy integration in the calculation of
the pair diagram can be closed in the upper complexk− semi-plane (see Appendix B), and
consequently the poles in the integrand of Eq. (8) are

k−
(3) = P ′− − (P ′ − k)−on + ıε = P ′− − (P ′ − k)2⊥ +m2

P ′+ − k+ + ıε, (16)

and

k−
(4) = P ′− − (P ′ − k)2⊥ +m2

R

P ′+ − k+ + ıε. (17)

The first pole, Eq. (16), comes from the last factor of Eq. (9), while the second pole,
Eq. (17) comes fromΛ(P ′, k). The position of both poles ink− are∼ (q+)−1 in the limit
of q+ → 0. Then, in order to find the dependence ofF

(II)
π (q2, α) on q+ in this limit, it is

enough to count the power ofq+ in Eq. (8), when the residues are evaluated. The phase-
space factor in the denominator of Eq. (8) is of the order of(q+)2. Then, let us consider the
trace, Eq. (12), with the proper values ofk− (see Appendix B). The first term and third one
are∼ q+, the second term and the fourth one are of order(q+)0. Then the trace is of order
(q+)0. Evaluating the contribution to the residues from the remaining part of Eq. (9), we
found thatΠ(k,P,P ′) is of the order of(q+)2. Therefore the integrand goes to a constant
for q+ → 0, and thusF (II)

π (q2, α) is proportional toq+ in this limit, because of the range
of thek+ integration.

A relevant feature in the analysis of the form factor is given by the presence of
a contribution which is instantaneous in the light-front time, and is produced by the
instantaneous term present in the Dirac propagator. As a matter of fact, the Dirac
propagator can be decomposed using the Front-Form momenta as follows [2]

/k +m

k2 −m2 + ıε
= /kon +m

k+(k− − k−
on + ıε

k+ )
+ γ+

2k+ , (18)

where the second term, proportional toγ+, is an instantaneous term in the light-front
time. It should be pointed out that the instantaneous contribution to the form factor is
produced only by the spectator fermion. Indeed, the instantaneous terms pertaining to the
other propagators do not contribute, because of the factorγ+ from the current and the
property(γ+)2 = 0.

In our symmetric model, the instantaneous term of Eq. (18) contributes both to
F
(I)
π (q2, α) andF (II)

π (q2, α), due to the analytic structure of the symmetric vertex function
of Eq. (1). These contributions are of nonvalence nature, since they cannot be reduced to
the impulse approximation with the valence wave function.

3. Valence light-front wave function

The valence component of the light-front wave function can be obtained from the
Bethe–Salpeter amplitude eliminating the relative light-front time, i.e., constraining to
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equal light-front time the external spacetime coordinates of the two fermions, after
droppingthe instantaneous terms of the external Dirac propagators[6]. Physically, in the
external legs only light-front propagating particles are allowed. It is worth noting that the
effect of the instantaneous terms, which are present in a Bethe–Salpeter approach, could
be included in effective (many-body) operators to be used together with the valence wave
function [6].

In the present model the Bethe–Salpeter amplitude is

Ψ (k,P )= m

fπ

/k +m

k2 −m2 + ıε
γ 5Λ(k,P )

/k − /P +m

(k − P)2 −m2 + ıε
. (19)

The momentum part of the valence component of the light-front wave function,Φ(k+, �k⊥;
P+, �P⊥), can be obtained by eliminating out from Eq. (19): (i) the instantaneous terms,
(ii) the factors containing gamma matrices in the numerator, and (iii) thek+ and(P+ −k+)
factors appearing in the denominator. Then, after introducing the explicit expression forΛ,
one has to integrate overk−, viz.

Φ(k+, �k⊥;P+, �P⊥) = ı N
∫

dk−

2π

× 1

(k− − k−
on + ıε

k+ )(P− − k− − (P − k)−on + ıε
P+−k+ )

×
(

1

k2 −m2
R + ıε

+ 1

(P − k)2 −m2
R + ıε

)
, (20)

whereN is a normalization factor

N = √
Nc C

m

fπ
. (21)

Performing thek− integration in Eq. (20), one has

Φ(k+, �k⊥;P+, �P⊥) = P+

m2
π −M2

0

[ N
(1− x)(m2

π −M2(m2,m2
R))

+ N
x(m2

π −M2(m2
R,m

2))

]
, (22)

wherex = k+/P+, with 0� x � 1; M2(m2
a,m

2
b) = k2⊥+m2

a

x
+ (P−k)2⊥+m2

b

1−x − P 2⊥; and the

square of the free mass isM2
0 = M2(m2,m2). Since we have chosen a nonconstant,

symmetricΛ, a second term appears in Eq. (22), differently from Ref. [22], and then the
momentum part of the wave function becomes symmetric by the exchange of the momenta
of the two constituents.

By using only the valence component and generalizing the results of Refs. [22,38], the
electromagnetic form factor,F (WF)

π , evaluated in the Breit frame is written as follows

F (WF)
π

(
q2, α

) = 1

2π3(P ′+ + P+)

∫
d2k⊥ dk+ θ(k+)θ(P+ − k+)
k+(P+ − k+)(P ′+ − k+)

×Φ

(
k+, �k⊥;P ′+, �q⊥

2

)
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×
[
k−

onP
+P ′+ + 1

2
�k⊥ · �q⊥(P ′+ − P+)− 1

4
k+q2⊥

]

×Φ

(
k+, �k⊥;P+,− �q⊥

2

)
, (23)

with k−
on = (k2⊥ +m2)/k+ (see Eq. (10)). Once the normalization constantC is determined

from the conditionFπ(0) = 1 in Eq. (6), the value ofF (WF)
π for q2 = 0 yields the

probability (independent ofα) of the valenceqq̄ component in the pion,η. It should be
pointed out that a value ofη < 1 is expected, if the nonvalence contributions are important,
and this is just what occurs in our model (see Section 4 for details), differently from the
case of a nonsymmetric ansatz for the Bethe–Salpeter amplitude, whereη = 1 [22].

Eq. (23) represents a point of contact between a field theoretical approach and the FFHD
with a fixed number of particles, adopting an impulse approximation current operator.
Indeed, including a proper factor inΦ, namely

√
M0/P+ and normalizing the wave

function one can recover the FFHD expression for the form factor,FFFHD
π . In particular,

puttingα = 0◦, one obtains the standard FFHD expression in the frameq+ = 0 [13].
The valence component of the light-front wave function, Eq. (20), is not an eigenfunc-

tion of the total angular momentum, since it is only one of the components of the pion state
in the Fock space. Therefore, we cannot directly compare the valence wave function of the
present model with the wave functions corresponding to approaches with a fixed number of
particles [17], which are eigenfunctions of the intrinsic angular momentum [10]. However,
in order to make contact with dynamical models, we introduce the transverse momentum
probability density

f (k⊥)= 1

4π3mπ

2π∫
0

dφ

mπ∫
0

dk+M2
0

k+(mπ − k+)
Φ2(k+, �k⊥;mπ, �0). (24)

By integratingf (k⊥) over �k⊥, we obtain the probability of the valence component in the
pion:

η =
∞∫

0

dk⊥ k⊥f (k⊥). (25)

Furthermore, the transverse momentum probability density vsk⊥/m results to be very
useful for a quantitative definition of strongly and weakly relativistic composite systems.
Indeed high values of the transverse momentum distribution fork⊥/m> 1 are a distinctive
feature of a strongly relativistic system. In particular, in Section 4f (k⊥) will allow us to
investigate the influence of the dynamical scale of the system on the role played by the pair
term.

Another relevant quantity to be used for constraining the parameters of our model is the
pion decay constant,fπ . It is defined through the matrix element of the partially conserved
axial-vector current

Pµ〈0|Aµ
i |πj 〉 = ı m2

πfπδij . (26)
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Following Ref. [38], we takeAµ
i = q̄γ µγ 5 τi

2 q and adopt our ansatz for the pion-q̄q vertex
function. In this way we obtain

ıP 2fπ = m

fπ
Nc

∫
d4k

(2π)4
Tr

[
/Pγ 5S(k)γ 5S(k − P)

]
Λ(k,P ), (27)

and integrating onk−, one getsfπ in terms of the valence component of our model:

fπ = m
√
Nc

4π3

∫
d2k⊥ dk+

k+(mπ − k+)
Φ(k+, �k⊥;mπ, �0). (28)

4. Numerical results

4.1. Pion model

In our model, we have two free parameters for the pion: the constituent quark mass,
m, and the regulator mass,mR . The constituent quark mass is chosen asm = 0.220 GeV,
adequate for the meson phenomenology [37,38,42]. The regulator massmR = 0.6 GeV
is found by fitting Eq. (28) to the experimental valuef exp

π = 92.4 MeV. For the pion
mass we use the experimental value of 0.140 GeV. As a consequence, the charge radius,
obtained from〈r2〉 = 6 ∂

∂q2Fπ , comes out to be 0.74 fm, which is about 10% larger than
the experimental value (rexp= 0.67± 0.02 fm [43]).

In Fig. 2, the results for the pion form factor are shown and compared to the data of
Refs. [44–48]. The full-model calculations, Eq. (6), nicely agree with the new data for the
pion form factor [44]. Therefore, our model, based on a nonconstant, symmetric vertex can
reproduce the form factor data consistently with the experimental value offπ , while for
the nonsymmetric regulator this was not possible [22]. Remarkably, in order to reproduce
simultaneouslyfπ and the experimental form factor within our model, the constituent
quark mass has to be chosen in the range between 0.2 and 0.3 GeV. Compatibility between
form factor and decay constant has been also achieved in [36], where a constant pion-qq̄

vertex and a nonlocal photon vertex were adopted.
The form factor in the Breit frame withα = 0◦ (q+ = 0), where the pair-term

contribution is zero, is identical to the sum ofF (I)
π and F (II)

π , calculated in the frame
corresponding toα = 90◦, as it must be for a covariant model. In Fig. 2,F

(I)
π andF (II)

π ,
for α = 90◦, are also shown. Differently from the caseα = 0◦, for α = 90◦ the form factor
is dominated by the pair production process, except nearq2 = 0. At high values of the
momentum transfer the form factor is completely exhausted by the pair-term contribution.
It is worth noting that such a dominance is mainly due to a kinematical effect and appears
to be fairly model independent (see also Ref. [36]). A qualitative argument, which is
applicable to the reference frame withq+ = √−q2 and essentially follows the work of
Sawicki [21], is given in what follows.

Since the form factor is dimensionless, one can write qualitatively

F (I)
π

(
q2, α

) ∼
P+∫
0

dk+

P+ + P ′+ ∼ P+

P ′+ + P+ . (29)
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Fig. 2. The pion form factor vs−q2. The contributions toFπ (q2), evaluated in the Breit frame withq+ =
√

−q2,

i.e.,α = 90◦ (Eq. (4)), are also shown. Solid line: full result; dashed line:F
(I)
π (q2, α) (full result without the pair

term, Eq. (7)); dotted line:F(II )
π (q2, α) (pair term, Eq. (8)); long-dashed line:F(I)

π inst(q
2, α) ( instantaneous-term

contribution toF(I)
π (q2, α)); short-dashed line:F(II )

π inst(q
2, α) (instantaneous-term contribution to the pair term).

Experimental data: Ref. [44] (full squares), Ref. [45] (full triangles), Ref. [46] (empty squares), Ref. [47] (empty
circles) and Ref. [48] (full circles).

At the same time, see the discussion in Section 2, the contribution of the pair production
amplitude to the form factor, is roughly

F (II)
π

(
q2, α

) ∼
P ′+∫
P+

dk+

P+ + P ′+ ∼ q+

P ′+ + P+ . (30)

The validity of such an approximation is related to the momentum cutoff in the vertex
function, and therefore it is not reliable for large values ofq+. Recalling that forα = 90◦

P+ =
√
m2
π +

(
q+
2

)2

− q+

2
(31)

the estimate of the ratio of the above contributions is given by

F
(I)
π (q2, α = 90◦)

F
(II)
π (q2, α = 90◦)

∼
√(

mπ

q+

)2

+ 1

4
− 1

2
. (32)

At the qualitative level, we can roughly say from Eq. (32) that the two contributions to the
form factor are expected to have about the same magnitude when−q2 = −q2

(I/II) =m2
π/2,
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which gives for the pion−q2
(I/II) = 0.01 (GeV/c)2. Our model calculation yields−q2

(I/II) =
0.03 (GeV/c)2. In Ref. [36], for the kaon it was shown that the pair term contribution
becomes dominant for−q2

(I/II) ≈ 0.2 (GeV/c)2, while our estimate (Eq. (32)) gives

−q2
(I/II) = m2

K/2 = 0.13 (GeV/c)2. Therefore, one could argue that our crude estimate
is able to give a momentum scale where sizeable effects due to the pair production term
are expected forα = 90◦.

The contributions of the instantaneous part of the Dirac propagator toF
(I)
π (q2, α) and

F
(II)
π (q2, α), calledF (I)

π inst(q
2, α) andF (II)

π inst(q
2, α), respectively, are also shown in Fig. 2

for α = 90◦. One can physically understand why inF (II)
π (q2, α) the instantaneous part is

important and dominates at high momentum transfers. The interpretation is the following:
in principle, see Fig. 1(b), the spectator quark can be exchanged between incoming and
outgoing pion at a given instantx+, while the pair of quark and antiquark has been
produced by the virtual photon at an earlier stage. As the magnitude of the momentum
q−(= −q+) increases, the time fluctuation for the virtual process decreases and favours
the instantaneous exchange of the spectator quark between the initial and final pion. In
fact, Fig. 2 shows the dominance ofF

(II)
π inst(q

2, α) in the pion form factor as the momentum

transfer increases. It is worth noting that the value ofF
(I)
π inst(q

2, α) is nonzero because of

the specific analytic structure of the vertex. As a matter of fact,F
(I)
π inst(q

2, α) is nonzero,
because of the presence of a pole in Eq. (7) atk− = (k2⊥ +m2

R)/k
+ in the vertex function

Λ, Eq. (13), when one chooses to close the contour for the Cauchy integration in the lower
complex semi-plane ofk−.

In Fig. 3, the results for the various contributions to the pion form factor for−q2 = 1
(GeV/c)2 as a function of the angleα are shown. For increasing angles, the form factor
changes smoothly from valence to pair-term or nonvalence dominance.

In Fig. 4, we compare the results forF (I)
π , Eq. (7), andF (WF)

π , Eq. (23), where the light-
front valence component of the model, defined according to Eq. (22) is used. The absolute
normalization of the valence componentη, i.e., the probability of theqq̄ Fock-state
component in the pion, is calculated to beη = 0.77, differently from the nonsymmetric
regulator model of Ref. [22], whereη = 1. The symmetric form of the vertex implies
contributions from many poles to the form factor and the presence of many poles makes
the valence component comparatively smaller than in the nonsymmetric case. In a previous
work on DIS, based on a wave function contribution only, [38] a renormalization around
0.5–0.75 was necessary to fit the data. To compareF

(I)
π andF (WF)

π , we have arbitrarily
normalizedF (WF)

π (0) to 1. As shown in Fig. 4, the momentum behaviour ofF
(I)
π andF (WF)

π

is almost the same, independently of the reference frame, forα between 0◦ and 90◦. This
means that our kinematical argument, about the suppression ofF

(I)
π (q2, α) with respect to

the full form factor in theq+ = √−q2 frame, could be extended toF (WF)
π (q2, α) as well.

OnceF (WF)
π (0) is arbitrarily normalized to 1, namelyC → C/

√
η in Eq. (21), a good

description of the form factor data forα = 0◦ is achieved, as one can deduce from
Fig. 4, butf (WF)

π = 105 MeV, which overestimates the experimental value, sincef
(WF)
π =

fπ/
√
η. The value off (WF)

π is similar to the one found for nonsymmetric models, once the
form factor below 2 (GeV/c)2 is fitted (see, e.g., [22]).
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Fig. 3. Contributions to the pion form factor vsα (see Eq. (4)) for−q2 = 1 (GeV/c)2. Solid line: full

result; dashed line:F(I)
π (q2, α) (full result without the pair term, Eq. (7)); dotted line:F(II )

π (q2, α) (pair term,

Eq. (8)); long-dashed line:F(I)
π inst(q

2, α) (instantaneous-term contribution toF(I)
π (q2, α)); short-dashed line:

F
(II )
π inst(q

2, α) (instantaneous-term contribution to the pair term).

Fig. 4. Comparison between the pion form factor calculations forF
(I)
π (Eq. (7)) and forF(WF)

π (Eq. (23)), at

α = 0◦, 45◦ and 90◦. Solid line:F(I)
π ; dotted line:F(WF)

π , normalized to 1 atq2 = 0.
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As discussed in Section 3,F (WF)
π can be formally related to the form factor obtained

within FFHD, where only the valence contribution appears. Since the momentum
behaviour ofF (I)

π andF (WF)
π is almost the same, then one can argue thatFFFHD

π should

correspond to the contribution ofF (I)
π . This means thatFFFHD

π calculated in the Drell–Yan
frame could represent a good effective approach for evaluating the form factor of the pion.
Let us note that in FFHD the pair term can appear only as a contribution from two-body
currents.

4.2. Weakly relativistic systems

In order to investigate the sensitivity of the pair term upon the dynamical scale of the
composite system, we consider a case sharply different from the pion one. We adjust our
model to the deuteron scale, and use for the mass of the system the valuemD = 1.874 GeV
and for the mass of the constituentsm = 0.938 GeV. We adopt a regulator mass of
mR = 1.1 GeV that gives a mean square radius of 3.25 fm2 comparable to the difference,
r2
D,exp− r2

p,exp, between the experimental values of the deuteron and proton mean square
radii. In Fig. 5, we show the results of the form factor calculations for our mock deuteron.
According to our qualitative kinematical estimate given in the previous subsection (see
Eq. (32), withmD replacingmπ ), at −q2 ∼ 2 (GeV/c)2 the pair term in the Breit frame
with q+ = √−q2 is expected to be as large asF (I). As a matter of fact, at this momentum
transfer, the pair term is only about 15% of the form factor, as shown in Fig. 5. Indeed,

Fig. 5. Form factor for a weakly relativistic spin-0 system vs−q2. The contributions to the form factor,
evaluated in the Breit frame withq+ =

√
−q2, i.e., α = 90◦ (Eq. (4)), are also shown. Solid line: full

result; dashed line:F(I)
π (q2, α) (full result without the pair term, Eq. (7)); dotted line:F(II )

π (q2, α) (pair term,

Eq. (8)); long-dashed line:|F(I)
π inst(q

2, α)| (instantaneous-term contribution toF(I)
π (q2, α)); short-dashed line:

F
(II )
π inst(q

2, α) (instantaneous-term contribution to the pair term).
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the kinematical estimate does not work for a system with a rapidly decreasing momentum
distribution. Moreover, we observe that the instantaneous term of the Dirac propagator
gives a small contribution to the pair term, as well as toF (I)(q2, α = 90◦). This fact is
related to the basically nonrelativistic nature of the constituents in our mock deuteron.
As illustrated in Fig. 6, the dimensionless product ofk2⊥ times the transverse probability
density, Eq. (24), is peaked atk⊥ = 0.06m for our model. For the sake of comparison, in
Fig. 6 it is also shown the transverse probability density for an actual deuteron; in particular
the density has been calculated from the deuteron wave function corresponding to the Reid
soft-core model of the deuteron [49]. Remarkably, the same overall behaviour has been
obtained in both cases. On the contrary the pion is a strongly relativistic system. For our
pion modelk2⊥f (k⊥) is peaked atk⊥ � m, while for the FFHD model of Refs. [16,17]
the peak occurs aroundk⊥ = 2.5m. The FFHD model of Refs. [16,17] is based on a mass
operator with the effective interaction of Ref. [37], which includes one-gluon-exchangeand
linear confinement terms. The pion model from this mass operator, in theq+ = 0 frame,
has a charge radius of 0.46 fm for pointlike constituent quarks. This value largely explains
why the position of the peak appears at an higher value of the transverse momentum with
respect to our model, which has a radius of 0.74 fm.

In summary, for a weakly relativistic system with spin equal to 0, the valence
contribution to the form factor yields a good approximation of the whole form factor up to
−q2 = 2 (GeV/c)2 in any reference frame. Therefore, one can argue that the evaluation of
FFFHD can be considered a reliable approximation to the full form factor in this case.

Fig. 6. Dimensionless product of the transverse momentum probability density (Eq. (24)) timesk2⊥ vs the ratio
k⊥/m. Results for the present pion model (solid curve with dots), the pion model of Ref. [15] (dashed curve),
a weakly relativistic system (solid curve) and the deuteron from the Reid soft-core potential [49] (short-dashed
curve).
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4.3. Pair-term contribution and FFHD estimate

In order to study in more detail the pair-term contribution, we show in Fig. 7 the
ratio betweenF (II)(q2, α = 90◦) and the full form factor. We compare the results of our
covariant model

R(COV) = F (II)(q2, α = 90◦)
F (q2)

(33)

with the kinematical estimate, Eqs. (29) and (30), given by

R(KIN ) = q+

q+ + P+ . (34)

This kinematical estimate of the pair term works fairly well for the pion, while it
overestimates the contribution ofF (II) for the weakly relativistic system, due to the rapid
fall-off of the momentum distribution which makes Eq. (30) unreliable. In Fig. 7, we also
report the following ratio

R(FFHD) = F
(DY)
π (q2)−F

(LPS)
π (q2)

F
(DY)
π (q2)

, (35)

whereF (DY)
π (q2) andF (LPS)

π (q2) are the pion form factor evaluated in the Drell–Yan frame
and in theq+ = √−q2 frame, respectively, within the FFHD model of Ref. [17], using
pointlike constituent quarks and the one-body current. Such a ratio could yield insight on
the relevance in FFHD of two-body current contributions corresponding to the pair term.

Fig. 7. Ratio between the pair term, calculated forα = 90◦ , and the full form factor vs−q2. Upper curves
correspond to the pion. Solid line: covariant pion model,R(COV) (Eq. (33)); dashed line with dots: FFHD ratio,
R(FFHD) (Eq. (35)); short-dashed line: kinematical estimate,R(KIN ) (Eq. (34)). Lower curves correspond to a
weakly relativistic system at the deuteron scale. Solid line: covariant result; dashed line: kinematical estimate.
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Indeed,F (DY)
π (q2) represents an estimate ofF (I)

π (q2, α = 0◦)= Fπ(q
2), whileF (LPS)

π (q2)

should describeF (I)
π (q2, α = 90◦) (cf. comments to Fig. 4) and therefore one can argue

that R(FFHD) ∼ R(COV) ∼ R(KIN ). As a matter of fact, the ratioR(FFHD) qualitatively
agrees with the results of our covariant model and with the model-independent kinematical
estimate (see Fig. 7). Thus, the suppression ofFFFHD

π in the q+ = √−q2 frame with
respect to the Drell–Yan frame can be explained in terms of a missing contribution in
the current, that we could identify with two-body current contributions related to the pair
term.

For the sake of completeness,R(COV) andR(KIN ) are also shown in Fig. 7 for a weakly
relativistic system. SinceR(KIN ) � R(COV), one can rely only on model calculations for
inferring the dominance of the valence contribution with respect to the nonvalence, over a
wide range of momentum transfer. We have also evaluatedR(FFHD) for our mock deuteron
and we have foundR(FFHD) ∼R(COV). This result confirms the small effect of the pair term
for a spin-0 weakly relativistic system.

5. Conclusion

Within a covariant model with a vertex function which is symmetric in the momentum
space of the constituents, we have calculated the electromagnetic form factor for a two-
fermion, pion-like system. Such a model has allowed us to perform a detailed analysis of
the pair-term contribution both changing the orientation of the Breit frame, where the form
factor is calculated, and the dynamical scale of the system.

We have used a pseudoscalar coupling for the pion-qq̄ vertex and a current for the
point-like constituents in impulse approximation. It is worth noting that in our approach
the current of the whole system is conserved. We have adopted for the first time a
nonconstant, symmetric ansatz for the Bethe–Salpeter amplitude, and we have obtained
the valence component of the pion state by projecting out the Bethe–Salpeter amplitude on
thex+ = 0 hypersurface. The symmetric vertex function implies a valence wave function
with the same property. In this way we have overcome some previous conceptual and
phenomenological difficulties related to the use of a nonsymmetric regulator for describing
the pion. As a matter of fact, the form factor and the weak decay constant cannot be
simultaneously reproduced with a nonsymmetric vertex function (see, e.g., [22]).

In our covariant model for the pion, the two free parameters, the constituent quark
mass(m) and the regulator mass(mR), have been fixed as follows: (i) the constituent
quark mass was chosen asm = 0.220 GeV from the meson spectroscopy [37], (ii) the
regulator massmR = 0.6 GeV was found by fitting the experimental weak decay constant,
f

exp
π = 92.4 MeV. As a consequence, the form factor obtained in our covariant model

nicely agrees with the new data for the pion form factor [44]. It should be pointed out that,
if we wish to reproduce simultaneouslyfπ and the form factor data with our approach, the
constituent quark mass should be chosen in the range between 0.2 and 0.3 GeV. Another
interesting outcome of our symmetric model is that the probability of the pion valence
component,η, is less than 1 (about 75%), at variance with previous covariant calculations
[22,36] whereη = 1. The em form factor of the pion-like system has been decomposed in
two contributions, with the second one given by the pair-diagram term. The separation of
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the covariant result in such contributions is unique and does not depend on any particular
dynamical model used to generate our choice of BS vertex, as long as the four-dimensional
impulse approximation is adopted to calculate the em current (see Eq. (3)).

Following Ref. [36], but with a nonconstant, symmetric vertex function, we have
investigated the frame dependence of the pair-term contribution to the form factor of pion-
like systems. Our conclusions strengthen and generalize the conclusions of Ref. [36]. In
particular, after introducing a transverse momentum distribution to distinguish between
strongly and weakly relativistic systems, we have also analyzed the form factor for the
second case.

In general the magnitude of the pair-term contribution in the electromagnetic current
depends on the frame, because a dynamical transformation change the relative weight of
valence and nonvalence contributions in the Fock state and then in the form factor, while
the sum, that is an invariant quantity, does not. For strongly relativistic systems, as the
pion, the effect is dramatic: in the Breit frame whereq+ = √−q2 the form factor is largely
dominated by the pair diagram for−q2 �= 0, while adjusting the model to the deuteron scale
(weakly relativistic system), the pair term becomes negligible at low momentum transfer
and only contributes by 30% at−q2 = 4 (GeV/c)2.

The rapid fall-off of the valence component contribution to the form factor of the
pion for purely longitudinal momentum transfers,q+ = √−q2, is a feature which can
be understood also by a general, crude kinematical estimate. As matter of fact, the ratio
between the pair contribution and the full form factor is roughly given by (see also, e.g.,
[21])

RKIN = q+√
m2
π + (

q+
2 )2 + q+

2

.

From such an estimate one can have some insight on the role played by the mass of the
composite system, in determining the onset of the importance of the pair diagram in the
form factor.

Finally, we have compared the results of our covariant model for the pion form factor
to the ones developed within the Front Form Hamiltonian Dynamics, based on one-body
current operators. Such a comparison has shown that some general features are shared. In
particular, the fall-off of the valence contribution in theq+ = √−q2 frame faster than the
one in theq+ = 0 frame can be recovered in the FFHD approach. It should be pointed
out that the FFHD calculations do not include the contribution of the pair term to the form
factor, which should appear as a two-body current contribution.

In the case of the deuteron scale (weakly relativistic system), the relevance of
the pair-term contribution is shifted towards higher values of the momentum transfer
(2–4 (GeV/c)2). Therefore, these encouraging results of our exploratory analysis at the
deuteron scale urge studies which take into account the vector nature of the deuteron.

The investigation of the pair-term contribution carried out within the covariant model
of the present work could give a first suggestion for an explicit form of the two-body
current contribution to be used within phenomenological FFHD approaches. A detailed
analysis of the light-front pair term in a given field theoretical model can be done using
the quasi-potential approach of Refs. [5,6]. Within this approach, the light-front pair
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diagram for nonvanishingq+ will come from the contribution of a two-body current,
which can be formally derived in a consistent way. Numerical investigations of a dynamical
model, featuring the mentioned properties and suitable for applications to hadrons, will be
presented elsewhere.
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Appendix A. Analytic integration on k− in F
(I)
π

In this appendix, we show in detail how to perform the contour integration onk− in
Eq. (7) forF (I)

π (q2, α). This quantity can be rewritten as follows

F (I)
π

(
q2, α

) = F (I)a
π + F (I)b

π + F (I)c
π + F (I)d

π . (A.1)

The first term in Eq. (A.1),F (I)a
π , is

F (I)a
π = − ı

2π
N

∫
d2k⊥ dk+ dk− θ(k+)θ(P+ − k+)
(k+)3(P+ − k+)(P ′+ − k+)

Tr[O+(k−)]

× 1

(k− − k−
on + ıε)(P− − k− − (P − k)−on + ıε)

× 1

(P ′− − k− − (P ′ − k)−on + ıε)(k− − k−
R + ıε)2

, (A.2)

where we explicitly wrote the dependence uponk− in Tr[O+(k−)] and

k−
R = k2⊥ +m2

R

k+ . (A.3)

The on-energy-shell values of the individual momentak−
on, (P − k)−on and(P ′ − k)−on are

given by Eq. (10). The normalization factor is

N = m2C2

(P+ + P ′+)f 2
π

Nc

(2π)3
. (A.4)

For the sake of algebraic simplicity the contour of integration in Eq. (A.2) can be closed
in the upper complex semi-plane ofk−, where only the polesk−

(1) and k−
(3), given by

Eqs. (14) and (16), respectively, are present. By evaluating the residues of the integrand
in Eq. (A.2), one has
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F (I)a
π = −N

∫
d2k⊥ dk+ θ(k+)θ(P+ − k+)
(k+)3(P+ − k+)(P ′+ − k+)

× 1

(P ′− − P− + (P − k)−on − (P ′ − k)−on)

×
[

Tr[O+(P− − (P − k)−on)]
(P− − (P − k)−on − k−

on)(P
− − (P − k)−on − k−

R )
2

− Tr[O+(P ′− − (P ′ − k)−on)]
(P ′− − (P ′ − k)−on − k−

on)(P
′− − (P ′ − k)−on − k−

R )
2

]
. (A.5)

The second term in Eq. (A.1),F (I)b
π , is given by

F (I)b
π = − ı

2π
N

∫
d2k⊥ dk+ dk− θ(k+)θ(P+ − k+)
(k+)2(P+ − k+)(P ′+ − k+)2

Tr[O+(k−)]

× 1

(k− − k−
on + ıε)(P− − k− − (P − k)−on + ıε)

× 1

P ′− − k− − (P ′ − k)−on + ıε

× 1

(k− − k−
R + ıε)(P ′− − k− − (P ′ − k)−R + ıε)

, (A.6)

where

(P ′ − k)−R = (P ′ − k)2⊥ +m2
R

P ′+ − k+ . (A.7)

In Eq. (A.6), the integration contour is closed in the lower complex semi-plane ofk−,
where the polesk−

(5) = k−
on− ıε andk−

(6) = k−
R − ıε are present. By calculating the residues

of the integrand in Eq. (A.6), one gets

F (I)b
π = −N

∫
d2k⊥ dk+ θ(k+)θ(P+ − k+)
(k+)2(P+ − k+)(P ′+ − k+)2

Tr[O+(k−
on)]

× 1

(P− − (P − k)−on − k−
on)(P ′− − (P ′ − k)−on − k−

on)

× 1

(k−
on − k−

R )(P
′− − k−

on − (P ′ − k)−R)
+ [k−

on ↔ k−
R ]. (A.8)

The third term in Eq. (A.1),F (I)c
π , is given by

F (I)c
π = − ı

2π
N

∫
d2k⊥ dk+ dk− θ(k+)θ(P+ − k+)
(k+)2(P+ − k+)(P ′+ − k+)2

Tr[O+(k−)]

× 1

(k− − k−
on + ıε)(P− − k− − (P − k)−on + ıε)

× 1

P ′− − k− − (P ′ − k)−on + ıε

× 1

(k− − k−
R + ıε)(P− − k− − (P − k)−R + ıε)

. (A.9)
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Eq. (A.9) is identical to Eq. (A.6) withP ′ ↔ P . Consequently we can write

F (I)c
π = F (I)b

π [P ′ ↔ P ]. (A.10)

The last term in Eq. (A.1),F (I)d
π , that represents the fullF (I)

π for the nonsymmetric
model of Ref. [22], is given by

F (I)d
π = − ı

2π
N

∫
d2k⊥ dk+ dk− θ(k+)θ(P+ − k+)
k+(P+ − k+)2(P ′+ − k+)2

Tr[O+(k−)]

× 1

(k− − k−
on + ıε)(P− − k− − (P − k)−on + ıε)

× 1

P ′− − k− − (P ′ − k)−on + ıε

× 1

(P− − k− − (P − k)−R + ıε)(P ′− − k− − (P ′ − k)−R + ıε)
, (A.11)

where

(P − k)−R = (P − k)2⊥ +m2
R

P+ − k+ . (A.12)

In Eq. (A.11), the integration contour can be closed in the lower complex semi-plane ofk−,
where only the polek−

(5) = k−
on − ıε is present. By evaluating the residue of the integrand

in Eq. (A.11), one has

F (I)d
π = −N

∫
d2k⊥ dk+ θ(k+)θ(P+ − k+)
k+(P+ − k+)2(P ′+ − k+)2

Tr[O+(k−
on)]

× 1

(P− − k−
on − (P − k)−on)(P

′− − k−
on − (P ′ − k)−on)

× 1

(P− − k−
on − (P − k)−R)(P ′− − k−

on − (P ′ − k)−R)
. (A.13)

Appendix B. Analytic integration on k− in F
(II)
π

To perform the contour integration onk− in Eq. (8) for the pair term,F (II)
π (q2, α), we

rewrite such a contribution as follows

F (II)
π

(
q2, α

) = F (II)a
π + F (II)b

π + F (II)c
π + F (II)d

π . (B.1)

All the terms in Eq. (B.1) can be evaluated by closing the integration contour in the upper
complex semi-plane ofk−. The first term in Eq. (B.1),F (II)a

π is

F (II)a
π = − ı

2π
N

∫
d2k⊥ dk+ dk− θ(k+ −P+)θ(P ′+ − k+)

(k+)3(P+ − k+)(P ′+ − k+)
Tr[O+(k−)]

× 1

(k− − k−
on + ıε)(P− − k− − (P − k)−on − ıε)

× 1

(P ′− − k− − (P ′ − k)−on + ıε)(k− − k−
R + ıε)2

, (B.2)
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where the on-energy-shell values of the individual momentak−
on, (P − k)−on and(P ′ − k)−on

are again given by Eq. (10) andk−
R is defined by Eq. (A.3). The normalization factor is the

same as in Eq. (A.4).
In Eq. (B.2), only the polek−

(3) given by Eq. (16) is present in the upper complex semi-
plane ofk−. By evaluating the residue of the integrand in Eq. (B.1), one gets

F (II)a
π = −N

∫
d2k⊥ dk+ θ(k+ − P+)θ(P ′+ − k+)

(k+)3(P+ − k+)(P ′+ − k+)
Tr[O+(P ′− − (P ′ − k)−on)]
(P ′− − (P ′ − k)−on − k−

on)

× 1

(P− − P ′− − (P − k)−on + (P ′ − k)−on)(P
′− − (P ′ − k)−on − k−

R )
2
.

(B.3)

The second term in Eq. (B.1),F (II)b
π , is given by

F (II)b
π = − ı

2π
N

∫
d2k⊥ dk+ dk− θ(k+ − P+)θ(P ′+ − k+)

(k+)2(P+ − k+)(P ′+ − k+)2
Tr[O+(k−)]

× 1

(k− − k−
on + ıε)(P− − k− − (P − k)−on − ıε)

× 1

P ′− − k− − (P ′ − k)−on + ıε

× 1

(k− − k−
R + ıε)(P ′− − k− − (P ′ − k)−R + ıε)

. (B.4)

In Eq. (B.4), the polesk−
(3), Eq. (16), andk−

(4), Eq. (17), contribute. By calculating the
residues of the integrand in Eq. (B.4), one has

F (II)b
π = −N

∫
d2k⊥ dk+ θ(k+ − P+)θ(P ′+ − k+)

(k+)2(P+ − k+)(P ′+ − k+)2
Tr[O+(P ′− − (P ′ − k)−on)]

× 1

((P ′ − k)−on − (P ′ − k)−R)(P ′− − (P ′ − k)−on − k−
on)

× 1

(P ′− − (P ′ − k)−on − k−
R )(P

− − P ′− + (P ′ − k)−on − (P − k)−on)

+ [
(P ′ − k)−on ↔ (P ′ − k)−R

]
. (B.5)

The third term in Eq. (B.1),F (II)c
π , is

F (II)c
π = − ı

2π
N

∫
d2k⊥ dk+ dk− θ(k+ −P+)θ(P ′+ − k+)

(k+)2(P+ − k+)(P ′+ − k+)2
Tr[O+(k−)]

× 1

(k− − k−
on + ıε)(P− − k− − (P − k)−on − ıε)

× 1

P ′− − k− − (P ′ − k)−on + ıε

× 1

(k− − k−
R + ıε)(P− − k− − (P − k)−R − ıε)

. (B.6)
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In Eq. (B.6) the only pole of the integrand in the upper complex semi-plane ofk− is k−
(3),

given by Eq. (16). By computing the residue, the result is

F (II)c
π = −N

∫
d2k⊥ dk+ θ(k+ − P+)θ(P ′+ − k+)

(k+)2(P+ − k+)(P ′+ − k+)2
Tr[O+(P ′− − (P ′ − k)−on)]

× 1

(P ′− − (P ′ − k)−on − k−
on)(P− − P ′− + (P ′ − k)−on − (P − k)−on)

× 1

(P ′− − (P ′ − k)−on − k−
R )(P

− − P ′− + (P ′ − k)−on − (P − k)−R)
. (B.7)

The last term is Eq. (B.1),F (II)d
π , is given by

F (II)d
π = − ı

2π
N

∫
d2k⊥ dk+ dk− θ(k+ − P+)θ(P ′+ − k+)

k+(P+ − k+)2(P ′+ − k+)2
Tr[O+(k−)]

× 1

(k− − k−
on + ıε)(P− − k− − (P − k)−on − ıε)

× 1

P ′− − k− − (P ′ − k)−on + ıε

× 1

(P− − k− − (P − k)−R − ıε)(P ′− − k− − (P ′ − k)−R + ıε)
. (B.8)

In Eq. (B.8) the polesk−
(3), Eq. (16), andk−

(4), Eq. (17), contribute. By calculating the
residues of the integrand of Eq. (B.8), we obtain

F (II)d
π = −N

∫
d2k⊥ dk+ θ(k+ − P+)θ(P ′+ − k+)

k+(P+ − k+)2(P ′+ − k+)2
Tr[O+(P ′− − (P ′ − k)−on)]

× 1

(P ′− − (P ′ − k)−on − k−
on) (P

− −P ′− + (P ′ − k)−on − (P − k)−on)

× 1

(P− − P ′− + (P ′ − k)−on − (P − k)−R)((P ′ − k)−on − (P ′ − k)−R)
+ [

(P ′ − k)−on ↔ (P ′ − k)−R
]
. (B.9)
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