

EXCLUSIVE MESON PRODUCTION IN HALL C AT JLAB 12 GEV

Marco Antonio Pannunzio Carmignotto Tanja Horn

Meson Reaction Dynamics

Two ways to look at meson electroproduction

t-channel process

- Described by t-channel exchange meson pole term in limit of small t
- Spatial distribution described by *form factor*

- At sufficiently high Q2, process can be described in terms of the "handbag diagram"
- Non-perturbative (soft)
 physics is represented by the GPDs

Soft-Hard Transition: Form Factors & GPDs

- Form factors and GPDs are essential to understand the structure of hadrons
- But measurements of form factors and GPDs have certain prerequisites:
 - For form factors, must make sure that σ_L is dominated by the meson pole term at low -t
 - For GPDs, must demonstrate that factorization applies
- A *comparison of pion and kaon* production data may shed further light on the reaction mechanism
 - quasi-model independent
 - more robust than calculations based on QCD factorization and present GPD models

- -As Q² becomes large: $\sigma_L >> \sigma_T$
- Factorization theorems for meson electroproduction have been proven rigorously only for longitudinal photons [Collins, Frankfurt, Strikman, 1997]

$$2\pi \frac{d\sigma}{dtd\phi} = \frac{d\sigma_{T}}{dt} + \epsilon \frac{d\sigma_{L}}{dt} + \sqrt{2\epsilon (1+\epsilon)} \frac{d\sigma_{LT}}{dt} \cos\phi + \epsilon \frac{d\sigma_{TT}}{dt} \cos2\phi$$

on P $H \tilde{H} E \tilde{E}$ p' π π Q^2 ?

4

Q⁻ⁿ scaling of o_L and o_T

- To access physics contained in GPDs, one is limited to the kinematic regime where hard-soft factorization applies
- A test is the Q² dependence of the cross section: $-\sigma_L \sim Q^{-6}$ to leading order $-\sigma_T \sim Q^{-8}$
- Difficult to draw a conclusion from current π⁺, K⁺ σ_L/σ_T ratios

 –Limited W and Q² coverage
 –Uncertainties from scaling in x, t

High quality σ_L and σ_T data for both kaon and pion would provide important information for understanding the meson reaction mechanism

JLAB 12 GEV:

L/T SEPARATED KAON CROSS SECTIONS

- Approved experiment E12-09-011 will provide first L/T separated kaon data *above* the resonance region (W>2.5 GeV)
- Onset of kaon factorization
- Understanding of hard exclusive reactions
 - -QCD model building
 - -Coupling constants

E12-09-011: Precision data for W > 2.5 GeV

TRANSVERSE CONTRIBUTIONS

- Recent data suggest strong contributions from transversally polarized photons
- Recent theoretical work found that σ_T can be interpreted in terms of transversity GPDs [S.V. Goloskokov, P. Kroll, Eur. Phys. J. C 65, 137 (2010), S.V. Goloskokov, P. Kroll, Eur. Phys. J. A 47, 112 (2011)]

Relative contribution of σ_L and σ_T in π° production is a good probe of transversity effects

- Could confirm the large contribution of of transversely polarized photons to this process
- May subsequently allow for detailed investigation of transversity GPDs

JLAB / SHMS DETECTOR SYSTEM: HOW TO MEASURE KAONS

Kaon Aerogel Cerenkov Detector inside the SHMS, in Hall C.

Cherenkov radiation:

- Threshold in particle's velocity for the radiation of light.
- Refractive index of material determine this threshold.

SHMS particle identification system (for the full momentum range):

- Kaon Aerogel Detector: K/p
- Noble gas Cerenkov: e/π
- Heavy gas Cerenkov: π/K
- Lead glass: e/π

R. Asaturyan *et al*, "The aerogel threshold Cherenkov detector for the High Momentum Spectrometer in Hall C at Jefferson Lab", NIM-A (2005)

Kaon Aerogel Detector Design Overview

External dimensions of the detector box: 1.10 x 1.00 x 0.45 m³

COMPONENTS CHARACTERIZATION

Step motors to position a blue LED in front of the PMT

Number of tiles

NEUTRAL PARTICLE DETECTION FACILITY

The detector system will consist of PbWO4 blocks of the PRIMEX setup in a new temperature controlled frame

A sweeping magnet -

Essentially deadtime-less digitizing electronics

HV bases with built-in amplifiers

> Measurement of the photons from DVCS/ π^0 decay

Detector features:

31 x 36 matrix of PbWO₄ crystals

2.05 x 2.05 x 18 cm³ each crystal

- Meson production plays an important role in our understanding of hadron structure
- JLab 12 GeV will allow rigorous tests of factorization in meson production, for instance, kaon factorization
 - Extended kinematic reach and studies of additional systems
 - Essential prerequisite for studies of valence quark spin/flavor/spatial distributions
- The kaon aerogel Cherenkov detector adds capability to detect kaons to SHMS to carry out our kaon experiments at 12 GeV
- A new neutral particle detection facility will augment Hall C scientific capabilities to include measurements with neutral final states, e.g., DVCS, WACS, π⁰ production

Work supported in part by NSF grants PHY-1019521 and PHY-1039446 Thanks for JSA and GSA/CUA support to attend this conference.

12