

The Hall C SIDIS program towards understanding the transverse momentum dependence of valence quarks

Edward R. Kinney, University of Colorado at Boulder *R. Ent (Jefferson Lab), T. Horn (Catholic University of America), H. Mkrtchyan, V. Tadevosyan (Yerevan)*

- Description of the Nucleon parton structure in 3D Momentum
- The question of factorization
- Precision (e,e' π [±]),(e,e'K[±]) cross sections at low P_h_⊥
- Precision (e,e' π^0) cross sections at low $P_{h\perp}$
- L/T Separation of SIDIS (e,e'π[±]) cross section

Exploring the 3D Momentum Structure of the Nucleon

- After decades of study of the partonic structure of the nucleon we finally have the experimental and theoretical tools to move beyond a 1D momentum fraction (x_{Bj}) picture of the nucleon.
 - * High luminosity, large acceptance experiments with polarized beams and targets
 - * Theoretical description of the nucleon in terms of a 5D
 Wigner distribution that can be used to encode both 3D
 momentum and transverse spatial distributions
- SIDIS cross sections depend on transverse momentum of hadron, P_{h⊥}, but this arises from both intrinsic transverse momentum of parton and transverse momentum created during the fragmentation process.
 - * Important to gain sufficient $P_{h\perp}$ data with different hadronic final states to allow momentum dependent fragmentation to be studied.

SIDIS Cross Section

$$\frac{d\sigma}{dxdyd\psi dzd\phi_h dP_{h,t}^2} = \frac{\alpha^2}{xyQ^2} \frac{y^2}{2(1-\varepsilon)} \left(1 + \frac{\gamma^2}{2x}\right) \left\{ F_{UU,T} + \varepsilon F_{UU,L} + \sqrt{2\varepsilon(1+\varepsilon)}\cos\phi_h F_{UU}^{\cos\phi_h} + \varepsilon\cos(2\phi_h)F_{UU}^{\cos(2\phi_h)} + \lambda_e\sqrt{2\varepsilon(1+\varepsilon)}\sin\phi_h F_{LU}^{\sin\phi_h} \right\}$$

Ph

 Q^2 = Virtual Photon Mass ε = Virtual Photon Polarization λ = Long. Beam Polarization

General formalism for (e,e'h) coincidence reaction w. polarized beam: [A. Bacchetta et al., JHEP 0702 (2007) 093]

(Ψ = azimuthal angle of e' around the electron beam axis w.r.t. an arbitrary fixed direction)

DNP Annual Meeting - 31 October 2015

Do parton distributions and fragmentation functions factorize at Jefferson Lab energies?

Flavor Decomposition of SIDIS

$$\frac{1}{\sigma_{(e,e')}} \frac{d\sigma}{dz} (ep \rightarrow hX) = \frac{\sum_{q} e_q^2 f_q(x) D_q^h(z)}{\sum_{q} e_q^2(x) f_q(x)}$$

 $f_q(x)$: parton distribution function $D_q^h(z)$: fragmentation function

$$M_x^2 = W'^2 \sim M^2 + Q^2 (1/x - 1)(1 - z)$$

- Leading-Order (LO) QCD
- after integration over $p_{h\perp}$ and φ_h
- NLO: gluon radiation mixes x and z dependences
- Target-Mass corrections at large z
- ln(1-z) corrections at large z

Brief Overview of SIDIS Program at Jefferson Lab

- Hall B
 - CLAS12 with good acceptance for precise determination of azimuthal distributions
 - Broad program of measurements including polarization, and investigation of target fragmentation region
- Hall A
 - ➡ Pol. ³He targets for neutron TMDs (SOLID & BB+SBS)
- Hall C
 - High luminosity for precise measurement of kinematic dependences: testing the validity of flavor decomposition framework at 11 GeV kinematics with R and cross sections

Precision SIDIS in Hall C

- Using magnetic spectrometers one can explore the highest luminosities! Hall C has SHMS and HMS.
- Common pivot allows most precise L/T separations
- New Neutral Particle Spectrometer adds π⁰ capability with good acceptance
 - Precise cross sections/ratios for (e,e' π[±]) and (e,e' π⁰) measurements at DIS kinematics
 - New cross sections/ratios for (e,e' K[±])
 - First direct determination of L/T ratio for SIDIS cross sections!

Precision (e,e'π[±]),(e,e'K[±]) cross sections at low P_{h⊥}

- Precision measurements to test the assumptions in factorization of SIDIS
- Explore assumptions of favored/disfavored fragmentation of different flavor quarks
- Look for target mass effects
- Higher twist effect
- Complementary to Hall B SIDIS measurements

Experiment E12-09-017

Example of Expected Charged Kaon Precision

Precision (e,e' π^0) cross sections at low $P_{h\perp}$

- Neutral pions are a good test and consistency check of flavor assumptions in extraction of TMDs with TM fragmentation
- Experimental measurement cleaner in terms of ρ (vector meson) contamination, exclusive pole contributions and hadron EM radiation effects
- Combined with charged pion/kaon data provides important constraint for analyzing future SIDIS experiments and TMD extraction

Experiment E12-13-007

L/T Separation of SIDIS (e,e'π[±]) cross section

- All SIDIS flavor analyses assume a value of R_{SIDIS} = σ_L/σ_T as it has never been measured!
- Common assumption is R_{SIDIS} = R_{DIS}
- How does R_{SIDIS} depend on *z*?
- How does R_{SIDIS} depend on $P_{h\perp}$?
- Do we understand Q² dependence in SIDIS and in Exclusive (z → 1) regimes?
- Hall C spectrometers ideal for precise R measurement

Experiment E12-06-104

Expected R = σ_L/σ_T Results

Solid black points are simulation results; colored points are from 70's experiments at Cornell.

Hall C Kinematic Reach

 $P_{h\perp}$ Coverage of SIDIS experiments

(e,e'π⁰) with SHMS E12-09-017

(e,e'π⁰) with NPS E12-13-007

Timescales

- Charge pion measurements in late 2016/early 2017
- Neutral pion measurements as soon as 2019
- R measurements to be scheduled after first commissioning Hall C measurements are analyzed in order to obtain the best accuracy

Summary

- Broad program at Jefferson Lab to determine the flavored partonic 3D momentum and spatial structure of the nucleon
- Important to verify the theoretical framework in this kinematic region with precise experimental determination of dependences on hadron momentum in SIDIS
- E12-09-017, E12-13-007, and E12-06-104 will provide SIDIS data to make these tests and explore new territory with (e,e'π⁰) and R_{SIDIS} measurements

Features of partonic 3D non-perturbative distributions

 $f^{a}(x, k_{T}^{2}; Q^{2})$

Ex. TMD PDF for a given combination of parton and nucleon spins

- transverse position and momentum of partons are correlated with the spin orientations of the parent hadron and the spin of the parton itself
- transverse position and momentum of partons depend on their flavor
- transverse position and momentum of partons are correlated with their longitudinal momentum
- spin and momentum of struck quarks are correlated with remnant
- quark-gluon interaction play a crucial role in kinematical distributions of final state hadrons, both in semi-inclusive and exclusive processes

12 GeV Scientific Capabilities

Hall B – understanding nucleon structure via generalized parton distributions

Hall D – exploring origin of confinement by studying exotic mesons

Hall A – form factors, future new experiments (e.g., SoLID and MOLLER) Hall C – precision determination of valence quark properties in nucleons/nuclei

Jefferson Lab